Exercise set 4

January 15, 2018

To be handed in by February 11th, 2018, in the mailbox in Manchester building.

You are required to hand in solutions for 4 out of the following 6 exercises.

Exercise 1: The aim of this exercise is to prove that the distance function

 $d_{\mathbb{H}^2}(P,Q) = \inf\{l_{\mathbb{H}^2}(\gamma) \mid \gamma : [a,b] \to \mathbb{H}^2 \text{ piecewise smooth curve with } \gamma(a) = P, \gamma(b) = Q\}$

induced on \mathbb{H}^2 by the Riemannian metric we defined satisfies d(P,Q) = 0 iff P = Q. Let $\gamma : [a,b] \to \mathbb{H}^2$ be a piecwise smooth curve joining distinct points P and Q. Write $\gamma(t) = (x(t), y(t))$.

- 1. Suppose that for all $t \in [a, b]$ we have $y(t) \leq 2y(a)$. Show that $l_{\mathbb{H}^2}(\gamma) \geq d_{\mathbb{R}^2}(P, Q)/2y(a)$, where $d_{\mathbb{R}^2}$ denotes the usual Euclidean metric.
- 2. Suppose now that there exists $t_0 \in [a, b]$ such that $y(t_0) = 2y(a)$, wlog assume that t_0 is minimal for this property, and denote $\gamma_1 = \gamma |_{[a, t_0]}$. Show that $l_{\mathbb{H}^2}(\gamma_1) \ge 1/2$.
- 3. Conclude.

Exercise 2: A new isometry of \mathbb{H}^2 .

1. Show that the map $z \mapsto -\bar{z}$ sends \mathbb{H}^2 to itself, and that it is an isometry of Riemannian metrics from \mathbb{H}^2 to itself.

2. Show that it is not of the form $z \mapsto \frac{az+b}{cz+d}$ for some matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ in $SL_2(\mathbb{R})$.

- **Exercise 3:** 1. Let $a \in \mathbb{R}, r \in \mathbb{R}^+$ and $\alpha, \beta \in (0, \pi)$. Without computation, show that the distance in \mathbb{H}^2 between the points $x = a + re^{i\alpha}$ and $y = a + re^{i\beta}$ depends only on α and β .
 - 2. Show that

$$d_{\mathbb{H}^2}(x,y) = \left[\ln\left(\frac{\sin t}{1+\cos t}\right)\right]_{t=\alpha}^{t=\beta}$$

Exercise 4: Consider the hyperbolic line $L = \{(0, y) \mid y > 0\}$. Let $p = (a, b) \in \mathbb{H}^2$ be such that $a \neq 0$.

- 1. By applying the triangle inequality in the triangle formed by the points (a, b), (-a, b) and (0, y) for some y > 0, show that the shortest path from (a, b) to a point of L is the arc of the euclidean half circle with center at the origin going through (a, b).
- 2. (Bonus) Let d > 0. Show that the set of points at distance d of L is not a hyperbolic line.

Exercise 5: (Triangles in \mathbb{H}^2 are thin) Let a > 0. Define $L_1 = L_1(a) = \{(0, y) \mid y > 0\}, L_2 = L_2(a) = \{(x, y) \mid (x - a)^2 + y^2 = a, y > 0\}$ and $L_3 = L_3(a) = \{(2a, y) \mid y > 0\}.$

- 1. Using the conclusions of Exercise 3.2 and Exercise 4.1, show that the distance $d(L_1, p)$ for a point p on L_2 increases monotonically to infinity as p moves towards (2a, 0) on the line L_2 .
- 2. Show that for any point p of L_2 we have $d(p, L_1 \cup L_3) \leq \ln(1 + \sqrt{2})$ (you can start by proving that this distance is maximal for the point p = (a, a)).

- 3. Let $p_0q_0r_0$ be a triangle in \mathbb{H}^2 (whose sides are segments of hyperbolic lines). Show that there exists $a \ge 0$ such that $p_0q_0r_0$ is isometric to a triangle pqr which lies inside the region bounded by lines $L_1(a), L_2(a), L_3(a)$ and such that $p, q \in L_2(a)$.
- 4. Deduce that for any triangle in \mathbb{H}^2 , any point on one of the sides of the triangle lies within a distance at most $(\ln(1 + \sqrt{2}))$ from one of the other two sides.

Exercise 6: Consider in \mathbb{H}^2 the hyperbolic circle centered at a + ib with radius r, i.e. the set

$$C = \{ z \in \mathbb{H}^2 \mid d_{\mathbb{H}^2}(z, a + ib) = r \}$$

- 1. Show that C is the Euclidean circle with centre $a + ib(e^r + e^{-r})/2$ and radius $b(e^r e^{-r})/2$ (you may want to reduce to the case where a = 0).
- 2. Deduce that any Euclidean circle is also a hyperbolic circle.